'\" te .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved .TH mlib_MatrixMulShift_S16_S16_Mod 3MLIB "2 Mar 2007" "SunOS 5.11" "mediaLib Library Functions" .SH NAME mlib_MatrixMulShift_S16_S16_Mod, mlib_MatrixMulShift_S16_S16_Sat, mlib_MatrixMulShift_S16C_S16C_Mod, mlib_MatrixMulShift_S16C_S16C_Sat \- matrix multiplication plus shifting .SH SYNOPSIS .LP .nf cc [ \fIflag\fR... ] \fIfile\fR... \fB-lmlib\fR [ \fIlibrary\fR... ] #include \fBmlib_status\fR \fBmlib_MatrixMulShift_S16_S16_Mod\fR(\fBmlib_s16 *\fR\fIz\fR, \fBconst mlib_s16 *\fR\fIx\fR, \fBconst mlib_s16 *\fR\fIy\fR, \fBmlib_s32\fR \fIm\fR, \fBmlib_s32\fR \fIl\fR, \fBmlib_s32\fR \fIn\fR, \fBmlib_s32\fR \fIshift\fR); .fi .LP .nf \fBmlib_status\fR \fBmlib_MatrixMulShift_S16_S16_Sat\fR(\fBmlib_s16 *\fR\fIz\fR, \fBconst mlib_s16 *\fR\fIx\fR, \fBconst mlib_s16 *\fR\fIy\fR, \fBmlib_s32\fR \fIm\fR, \fBmlib_s32\fR \fIl\fR, \fBmlib_s32\fR \fIn\fR, \fBmlib_s32\fR \fIshift\fR); .fi .LP .nf \fBmlib_status\fR \fBmlib_MatrixMulShift_S16C_S16C_Mod\fR(\fBmlib_s16 *\fR\fIz\fR, \fBconst mlib_s16 *\fR\fIx\fR, \fBconst mlib_s16 *\fR\fIy\fR, \fBmlib_s32\fR \fIm\fR, \fBmlib_s32\fR \fIl\fR, \fBmlib_s32\fR \fIn\fR, \fBmlib_s32\fR \fIshift\fR); .fi .LP .nf \fBmlib_status\fR \fBmlib_MatrixMulShift_S16C_S16C_Sat\fR(\fBmlib_s16 *\fR\fIz\fR, \fBconst mlib_s16 *\fR\fIx\fR, \fBconst mlib_s16 *\fR\fIy\fR, \fBmlib_s32\fR \fIm\fR, \fBmlib_s32\fR \fIl\fR, \fBmlib_s32\fR \fIn\fR, \fBmlib_s32\fR \fIshift\fR); .fi .SH DESCRIPTION .sp .LP Each of these functions performs a multiplication of two matrices and shifts the result. .sp .LP For real data, the following equation is used: .sp .in +2 .nf l-1 z[i*n + j] = {SUM (x[i*l + k] * y[k*n + j])} * 2**(-shift) k=0 .fi .in -2 .sp .LP where \fBi = 0, 1, ..., (m - 1)\fR; \fBj = 0, 1, ..., (n - 1)\fR. .sp .LP For complex data, the following equation is used: .sp .in +2 .nf l-1 z[2*(i*n + j)] = {SUM (xR*yR - xI*yI)} * 2**(-shift) k=0 l-1 z[2*(i*n + j) + 1] = {SUM (xR*yI + xI*yR)} * 2**(-shift) k=0 .fi .in -2 .sp .LP where .sp .in +2 .nf xR = x[2*(i*l + k)] xI = x[2*(i*l + k) + 1] yR = y[2*(k*n + j)] yI = y[2*(k*n + j) + 1] i = 0, 1, ..., (m - 1) j = 0, 1, ..., (n - 1) .fi .in -2 .SH PARAMETERS .sp .LP Each of the functions takes the following arguments: .sp .ne 2 .mk .na \fB\fIz\fR\fR .ad .RS 9n .rt Pointer to the first element of the result matrix, in row major order. .RE .sp .ne 2 .mk .na \fB\fIx\fR\fR .ad .RS 9n .rt Pointer to the first element of the first matrix, in row major order. .RE .sp .ne 2 .mk .na \fB\fIy\fR\fR .ad .RS 9n .rt Pointer to the first element of the second matrix, in row major order. .RE .sp .ne 2 .mk .na \fB\fIm\fR\fR .ad .RS 9n .rt Number of rows in the first matrix. \fBm > 0\fR. .RE .sp .ne 2 .mk .na \fB\fIl\fR\fR .ad .RS 9n .rt Number of columns in the first matrix, and the number of rows in the second matrix. \fBl > 0\fR. .RE .sp .ne 2 .mk .na \fB\fIn\fR\fR .ad .RS 9n .rt Number of columns in the second matrix. \fBn > 0\fR. .RE .sp .ne 2 .mk .na \fB\fIshift\fR\fR .ad .RS 9n .rt Right shifting factor. \fB1 \(<= shift \(<= 16\fR. .RE .SH RETURN VALUES .sp .LP Each of the functions returns \fBMLIB_SUCCESS\fR if successful. Otherwise it returns \fBMLIB_FAILURE\fR. .SH ATTRIBUTES .sp .LP See \fBattributes\fR(5) for descriptions of the following attributes: .sp .sp .TS tab() box; cw(2.75i) |cw(2.75i) lw(2.75i) |lw(2.75i) . ATTRIBUTE TYPEATTRIBUTE VALUE _ Interface StabilityCommitted _ MT-LevelMT-Safe .TE .SH SEE ALSO .sp .LP \fBmlib_MatrixMul_U8_U8_Mod\fR(3MLIB), \fBattributes\fR(5)